If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-63X-130=0
a = 1; b = -63; c = -130;
Δ = b2-4ac
Δ = -632-4·1·(-130)
Δ = 4489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4489}=67$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-67}{2*1}=\frac{-4}{2} =-2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+67}{2*1}=\frac{130}{2} =65 $
| x-(4)5/4=-1 | | 5(n-16)=n | | 2-4(5x-3)=4-(10x-3) | | -3+5x=21+-1X | | 2;3w+4)=5 | | 36-2(2x+1)=8x-2(8+x) | | 10x+3=25x-19 | | 2/3x-5/8x=2 | | 5x-9=7x=12 | | 10+6q=12+6q | | 3(2x+8)=69 | | 2x=297 | | 15=0.6(6x+20) | | 6(m+3)+3m=2(m-3) | | 8/x(2+2)=1 | | X/7=3y | | 7x+7=-5+4x+21 | | x4+x3=80 | | Nx8=64 | | 3a+4a=80 | | 4(2x+12)=70 | | x^2=25/256 | | -8(3x-2)=36 | | 1/2(k-3)=1/3(k+16) | | 7n-26=-5-6(-3n-2) | | 27(2−6n)n=0 | | 5x+7=10(8+7x) | | .5(r+3)=3(0.1+0.16r) | | X2-√3x-6=0 | | X2-11x+152=0 | | -6y-20=-2y+4(1-3y) | | 5x2=405 |